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Typical non-linear effects, e.g., dependence of the resonance frequency on the amplitude,
superharmonics in spectra and a non-linear relationship between excitation voltage and
vibration amplitude are observed in experiments with piezoceramics and in piezo–beam
systems excited at resonance by weak electric fields. These non-linear effects can be
observed for both the piezoelectric 31 and the 33-effect. In contrast to the well-known non-
linear effects for piezo-ceramics in the presence of strong electric fields, our findings have
not been described yet in detail in the literature. In this paper, a first description of these
phenomena is given by formulating non-linear constitutive relations, in particular by
introducing a non-constant Young’s modulus Ec and piezo electric factor d31 in the case of
a piezo–beam system. The equations of motion for the system under consideration are
derived via the Ritz method using Hamilton’s principle. The ‘‘non-linear’’ parameters are
determined and the numerical results are compared to those obtained experimentally. A
finite element model is used for verification of the results obtained by the Ritz method. The
effects described herein may have a significant influence whenever structures are excited
close to resonance frequencies via piezoelectric elements.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Figure 1 shows the system under consideration consisting of a cantilever beam with length
l; width b; and height hb: The lateral deformation of this beam is described by wðx; tÞ: Two
piezoceramics are bonded to the beam at mid-length (PIC 151 manufactured by PI-
Ceramic at Lederhose, Germany, z direction is the polarization direction). The dimensions
of the piezoceramics are given in Figure 1, the width is equal to that of the beam. The
parameter values used in the experiment are given in Section 5. The piezo–beam system is
excited to bending vibrations close to the first two resonance frequencies by applying a
corresponding alternate voltage with amplitude U0:

The observed behavior was typical of non-linear systems and included e.g., amplitude-
dependence of the resonance frequency, superharmonics in the response spectra and a
non-linear relationship between excitation voltage and vibration amplitude. A typical non-
linear response observed in the experimental set-up is shown in Figure 2. This figure
clearly shows a non-linear relationship between excitation voltage and amplitude response
at the first natural frequency. The natural frequency is determined at low voltages where
the behavior is approximately linear. Compared with an imaginary linear behavior in this
figure, these non-linear effects may result in differences in amplitude values of up to 200%.
This will be the case, if the system is excited at a natural frequency at low voltages, and the
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Piezo–beam system.
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Figure 2. Back-bone curve (amplitude response, excitation frequency f ¼ 15�58Hz (first natural frequency):
*, experiment.
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applied voltage is increased. They should for this reason not be neglected in the design of
smart structures or in the optimization of energy transfer when using such elements.

The current study presents observations of non-linear effects of this piezo–beam system
subjected to weak electric fields. In contrast, the non-linear behavior of piezoceramics in
the presence of strong electric fields is a well-known phenomenon. Dielectric hysteresis and
butterfly hysteresis are typical examples [1–3]. Hysteresis phenomena are also observed
using piezoelectric stack actuators [4]. The non-linear behavior of piezoceramics subjected
to weak electric field, as far as we know, has not been described in detail in the literature.
The non-linear behavior of piezo–beam systems subjected to weak electric field e.g., was
mentioned by Crawley and de Luis [5], who attributed it to non-linear damping.

2. POSSIBLE REASONS FOR NON-LINEAR BEHAVIOR

Nguyen [6] investigated several possibilities for explaining the non-linear behavior
found in piezo–beam systems, focusing on four main aspects: damping, influence of the
adhesive layer, non-linear beam theories and non-linear elastic and coupling behavior of
the piezoceramic.

Experiments with vibrations of free piezoceramics showed that the damping is small
within the piezoceramic. On the other hand, experiments with free and forced vibrations of
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the beam showed that a linear damping law provides a sufficiently accurate description of
the damping behavior.

The influence of the adhesive layer was also investigated by Nguyen [6] experimentally,
exciting the piezo–beam system by a harmonic force applied at the free end of the
cantilever beam. The resulting strains in the beam and piezoceramic were measured and a
linear relationship was observed.

In order to examine a possible non-linear behavior of the beam itself, different non-
linear beam theories were considered. The case of a cantilever beam including the effect of
longitudinal inertia was first investigated. This had been shown to result in a softening
effect by Atluri [7]. These results show the same qualitative softening behavior as found in
our experiment; however, in the case of the experiment, the effect was much stronger than
could possibly explained by this theory. Softening was also observed in tests on a piezo–
beam system with both end clamped, despite the fact that stiffening due to geometrical
non-linear behavior is expected in this case [8, 9]!

Obviously, the measured non-linear behavior is not described correctly by the effects
discussed so far. Hence, we concentrated on a non-linear elastic and coupling behavior of
the piezoceramic resulting in the development of the non-linear piezo–beam model given
in the next section. Experiments with forced vibrations of free piezoceramics electrically
excited close to their natural frequencies [6] showed a non-linear, unsymmetric strain-
dependent behavior of the Young’s modulus Ec and the piezoelectric factor d31: These
experiments are taken into account in developing the extension of the electric enthalpy
density for the non-linear effects.

3. NON-LINEAR MODELLING

In order to derive the equations of motion, Hamilton’s principle can be used. For a
piezoelectric continuum, it can be formulated as [10]

d
Z t1

t0

L dt þ
Z t1

t0

dW dt ¼ 0 ð1Þ

with the Langrangian

L ¼
Z

V

ðT � HÞ dV ;

where T and H; respectively, denote the kinetic energy density and the electric enthalpy
density. In the linear case, the enthalpy is given by [10]

H ¼ 1
2
EcS

2
xx � Ecd31SxxEz � 1

2
ðeT33 � d2

31EcÞE2
z ; ð2Þ

where Sxx is the strain with respect to the x direction, Ec Young’s modulus of the
piezoceramic and Ez the electric field in the z direction. The parameter d31 corresponds to
the piezoelectric 31-effect and eT33 is the dielectric constant measured at constant stress.
Using

Txx ¼ @H

@Sxx

and Dz ¼ �@H

@Ez

; ð3Þ

where Dz is the electric displacement with respect to the z direction and Txx the stress with
respect to the x direction, the well-known linear constitutive equations

Txx ¼ EcSxx � d31EcEz; ð4Þ
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Dz ¼ d31EcSxx þ ðeT33 � d2
31EcÞEz ð5Þ

are derived.
Based on experimental results [6], the non-linear dependence of Ec and d31 on Sxx is

approximated by

Ec ¼ Eð0Þ
c þ Eð1Þ

c Sxx þ Eð2Þ
c S2

xx; ð6Þ

d31 ¼ d
ð0Þ
31 þ d

ð1Þ
31 Sxx þ d

ð2Þ
31 S2

xx: ð7Þ

Assuming a linear relation between Dz and Ez and retaining terms only up to the third
order, the electric enthalpy density is derived as

H ¼ 1
2
Eð0Þ

c S2
xx þ 1

3
Eð1Þ

c S3
xx þ 1

4
Eð2Þ

c S4
xx

� g0SxxEz � 1
2
g1S

2
xxEz � 1

3
g2S

3
xxEz � 1

2
n0E2

z ð8Þ

with

n0 ¼ eT33 � ðdð0Þ
31 Þ

2
E

ð0Þ
c ; g0 ¼ E

ð0Þ
c d

ð0Þ
31 ;

g1 ¼ E
ð0Þ
c d

ð1Þ
31 þ E

ð1Þ
c d

ð0Þ
31 ; g2 ¼ E

ð0Þ
c d

ð2Þ
31 þ E

ð2Þ
c d

ð0Þ
31 þ E

ð1Þ
c d

ð1Þ
31 ;

ð9Þ

which satisfies the necessary and sufficient condition for the existence of the enthalpy
function:

@2H

@Sxx@Ez

¼ @Txx

@Ez

¼ �@Dz

@Sxx

¼ @2H

@Ez@Sxx

: ð10Þ

Using equation (3), the non-linear constitutive equations (4) and (5) can be derived
from (8)

Txx ¼Eð0Þ
c Sxx þ Eð1Þ

c S2
xx þ Eð2Þ

c S3
xx

� g0Ez � g1SxxEz � g2S
2
xxEz; ð11Þ

Dz ¼ g0Sxx þ 1
2
g1S2

xx þ 1
3
g2S2

xx þ n0Ez: ð12Þ

The virtual work dW in the undamped case vanishes:

dW ¼ 0: ð13Þ

4. EQUATIONS OF MOTION

In order to derive the equations of motion using Hamilton’s principle, H has to be
integrated over the volume of the beam and the piezoceramic to calculate L;Z

V

H dV ¼
Z

Vb

H dV þ
Z

Vc

H dV

¼
Z

Vb

1

2
EbS2

xx dV þ
Z

Vc

1

2
Eð0Þ

c S2
xx þ

1

3
Eð1Þ

c S2
xx þ

1

4
Eð2Þ

c S4
xx

�

�g0sxxEz �
1

2
g1S

2
xxEz �

1

3
g2S3

xxEz �
1

2
n0E2

z

�
dV ; ð14Þ

where Eb is Young’s modulus of the beam. The terms containing E
ð1Þ
c and g1 vanish due to

the symmetry of the system (see Section 7) and the fact, that the electric field Ez has
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opposite signs within the two piezoceramics. Using the kinematic relation

Sxxðx; z; tÞ ¼ �@2wðx; tÞ
@x2

z; 8x 2 ½0; l
; 8z 2 �hb

2
� hc;

hb

2
þ hc

� �
; ð15Þ

due to Euler–Bernoulli beam theory, the electric enthalpy is given asZ
V

H dV ¼ 1

2
EbIb

Z t

0

ðw00Þ2 dx þ 2a1

Z x2

x1

ðw00Þ2 dx þ 2a3

Z x2

x1

ðw00Þ4 dx

þ 2b1

Z x2

x1

w00 dx

� �
Ez þ 2b3

Z x2

x1

ðw00Þ3 dx

� �
Ez � 2b0E2

z ð16Þ

with

a1 ¼
1

6
Eð0Þ

c b
h

2
þ hc

� �3

� h

2

� �3
" #

; a3 ¼
1

20
Eð2Þ

c b
h

2
þ hc

� �5

� h

2

� �5
" #

;

b0 ¼
1

2
n0bhclc; b1 ¼

1

2
g0b

h

2
þ hc

� �2

� h

2

� �2
" #

;

b3 ¼
1

12
g2b

h

2
þ hc

� �4

� h

2

� �4
" #

: ð17Þ

The kinetic energy of the piezo–beam system is obtained byZ
V

T dV ¼ 1

2

Z
V

r ’ww2 dV ¼ 1

2
rbAb

Z l

0

’ww2ðx; tÞ dx þ rcAc

Z x2

x1

’ww2ðx; tÞ dx: ð18Þ

Introducing equations (16), (18) and (13) into Hamilton’s principle results in

d
Z t1

t0

L dt ¼ d
Z t1

t0

1

2
rbAb

Z l

0

ð ’wwÞ2 dx þ rcAc

Z x2

x1

ð ’wwÞ2 dx

� ��

� 1

2
EbIb

Z l

0

ðw00Þ2 dx þ 2a1

Z x2

x1

ðw00Þ2 dx þ 2a3

Z x2

x1

ðw00Þ4 dx

�

þ2b1

Z x2

x1

w00 dx

� �
Ez þ 2b3

Z x2

x1

ðw00Þ3 dx

� �
Ez � 2b0E2

z

		
dt ¼ 0: ð19Þ

4.1. LINEAR CASE

The eigenfunctions of the linear problem are calculated in this section. They are used as
shape functions for the non-linear case in the next section. The non-linear parameters a3

and b3 are assumed to be equal to zero in this case.
The electric field is considered to be homogeneous (Ez=f ðxÞ) and to be due to an

external excitation ðdEz ¼ 0Þ: The beam is divided into three segments with lateral
deformations w1; w2; w3 for the regions 05x4x1; x15x4x2; x25x4l respectively. The
boundary value problem is given by three equations of motion

EbIbw0000
1 þ rbAb .ww1 ¼ 0; ð20Þ

ðEbIb þ 2a1Þw0000
2 þ ðrbAb þ 2rcAcÞ .ww2 ¼ 0; ð21Þ

EbIbw0000
3 þ rbAb .ww3 ¼ 0 ð22Þ
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and 12 boundary conditions

w1ð0; tÞ ¼ 0; w0
1ð0; tÞ ¼ 0;

w1ðx1; tÞ ¼ w2ðx1; tÞ; w0
1ðx1; tÞ ¼ w0

2ðx1; tÞ;

ðEbIb þ 2a1Þw00
2ðx1; tÞ � EbIbw00

1ðx1; tÞ þ b1EzðtÞ ¼ 0;

EbIbw00
1ðx1; tÞ � ðEbIb þ 2a1Þw00

2ðx1; tÞ ¼ 0;

w2ðx2; tÞ ¼ w3ðx2; tÞ; w0
2ðx2; tÞ ¼ w0

3ðx2; tÞ ¼ w0
3ðx2; tÞ;

�ðEbIb þ 2a1Þw00
2ðx2; tÞ þ EbIbw00

3ðx2; tÞ þ b1EzðtÞ ¼ 0;

�EbIbw000
3 ðx2; tÞ þ ðEbIb þ 2a1Þw000

2 ðx2; tÞ ¼ 0;

w00
3ðl; tÞ ¼ 0; w000

3 ðl; tÞ ¼ 0:

Considering the case of short-circuited electrodes of the piezoceramics (E2 ¼ 0),
the eigenfunctions WkðxÞ of the piezo–beam can be obtained using the general
solution

WikðxÞ ¼ Aik sin likx þ Bik cos likx þ Cik sinh likx þ Dik cosh likx;

i ¼ 1; 2; 3; k ¼ 1; 2; . . . ;1 ð23Þ

with

l41k ¼ l43k ¼ rbAb

EbIb

o2
k; l42k ¼ ðrbAb þ 2rcAcÞ

ðEbIb þ 2a1Þ
o2

k;

where ok is the kth circular eigenfrequency which can be determined in addition to the
constants A, B, C, D by introducing equation (23) into the time-independent boundary
conditions.

4.2. NON-LINEAR CASE

The constants a3 and b3 are no longer equal to zero in the non-linear case. According to
the Rayleigh–Ritz method, the expansion

wðx; tÞ ¼
X

k

FkðxÞpkðtÞ ð24Þ

is introduced into equation (19). The shape functions FkðxÞ are chosen as the
eigenfunctions Wk calculated above. In contrast to references [6, 11], where the
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eigenfunctions of the beam without piezoceramics are used, these shape functions provides
much better convergence of the results, as described later in more detail.

Performing the variation, considering the orthogonality relations of the shape functions
FkðxÞ and assuming that Ez ¼ UðtÞ=hc is homogeneous results in

d
Z t1

t0

L dt ¼
X

k

Z t1

t0

�
� rbAb .ppk

Z l

0

F2
k dx � 2rcAc .ppk

Z x2

x1

F2
k dx

� EbIbpk

Z l

0

ðF00
kÞ

2 dx � 4a1pk

Z x2

x1

ðF00
kÞ

2 dx � 8a3

Z x2

x1

X
j

pjF00
j

 !3

F00
k dx

� 2b1Ez

Z x2

x1

F00
k dx � 6b3Ez

Z x2

x1

X
j

pjF00
k

 !2

F00
k dx

	
dpk dt ¼ 0: ð25Þ

In order to observe the non-linear effects, the system must be excited close to a natural
frequency. Hence, it is sufficient to approximate the system using one shape function only,
resembling the eigenform at the excitation frequency. Neglecting all coupling terms, the
system of uncoupled differential equations is derived as

mk .ppkðtÞ þ dk ’ppkðtÞ þ ckpkðtÞ þ eð1Þk p3
kðtÞ þ eð2Þk p2

kðtÞ ¼ fk; k ¼ 1; 2; 3; . . . ð26Þ

with

mk ¼ rbAb

Z l

0

F2
kðxÞ dx þ 2rcAc

Z x2

x1

F2
kðxÞ dx;

ck ¼ EbIb

Z l

0

ðF00
kðxÞÞ

2 dx þ 2

3
Ecb

hb

2
þ hc

� �3

� hb

2

� �3
" #Z x2

x1

ðF00
kðxÞÞ

2 dx;

fkðtÞ ¼ Eð0Þ
c bðhb þ hcÞ½F0

kðx2Þ � F0
kðx1Þ
dð0Þ

31 UðtÞ;

eð1Þk ¼ 4

5
Eð2Þ

c b
hb

2
þ hc

� �5

� hb

2

� �5
" #Z x2

x1

ðF00
kÞ

4 dx;

eð2Þk ¼ 1

2
½dð1Þ

31 Eð1Þ
c þ d

ð2Þ
31 Eð0Þ

c þ d
ð0Þ
31 Eð2Þ

c 
b hb

2
þ hc

� �4

� hb

2

� �4
" # Z x2

x1

ðF00
kÞ

3 dx

� �
UðtÞ

hc

; ð27Þ

the excitation voltage being

UðtÞ ¼ U0 cosðOtÞ:

Herein, a Rayleigh-type linear modal damping dk ’ppkðtÞ is added
dk ¼ amk þ bck: ð28Þ

The parameters a; b are derived experimentally.

4.3. SOLUTION BY THE HARMONIC BALANCE METHOD

For the determination of the non-linear coefficients, equation (26) is solved
approximately and the vibration amplitude is found. This procedure must be rather fast
so that it can be used in an optimization scheme for identification. A first approximate
solution of the differential equation is obtained via the harmonic balance method.
Equation (26) can be written as

m .ppðtÞ þ d ’ppðtÞ þ cpðtÞ þ eð1Þp3ðtÞ ¼ F0 cosðOt þ jÞ � %eeð2Þ cosðOt þ jÞp2ðtÞ: ð29Þ



Table 1

l (mm) b (mm) h (mm) r (kg/m3) E (N/m2) d31 Remark

Beam 400 25 3 7800 2�089
 1011 } St 37
Piezo 70 25 1 7790 0�667
 1011 �2�1
 10�10 PIC 151
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According to reference [12],

pðtÞ ¼ A cosðOtÞ ð30Þ

is introduced. Neglecting higher harmonics, this results in a polynomial equation for the
amplitude A

a5ðA2Þ5 þ a4ðA2Þ4 þ a3ðA2Þ3 þ a2ðA2Þ2 þ a1A2 þ a0 ¼ 0 ð31Þ

with the coefficients

a0 ¼ �F4
0 ;

a1 ¼ ½ðc � mO2Þ2 þ ðdOÞ2
F 2
0 � 1

2
%eeð2ÞF3

0 ;

a2 ¼ ½3
2
ðc � mO2Þeð1Þ � 11

8
ð%eeð2ÞÞ2
F2

0 � 1
2
½ðc � mO2Þ2 þ 3ðdOÞ2
%eeð2ÞF0;

a3 ¼ ½ 1
16
ðc � mO2Þ þ 9ðdOÞ2
ð%eeð2ÞÞ2 þ 9

16
ðeð1ÞÞ2F 2

0 � 3
4
ðc � mO2ÞF0eð1Þ%eeð2Þ þ 3

8
F0ð%eeð2ÞÞ3;

a4 ¼ � 9
32
ðeð1ÞÞ2%eeð2ÞF0 � 9

256
ð%eeð2ÞÞ4 þ 3

32
ðc � mO2Þeð1Þð%eeð2ÞÞ2;

a5 ¼ 9
256ðe

ð1ÞÞ2ð%eeð2ÞÞ2; ð32Þ

which can be solved, e.g., using Matlab. For comparison, equation (26) was also solved by
numerical integration, and good agreement was found.

5. DETERMINATION OF NON-LINEAR PARAMETERS

The linear parameters for the beam and the piezoceramic are given in Table 1.
The piezo–beam system is excited with the help of a function generator (Hewlett–

Packard HP 33120 A). The signal from the function generator is amplified using a power
amplifier (Br .uuel & Kjaer 2713, max voltage 100V, max current 1A, limit frequency
100 kHz). The vibrations of the beam are measured with the help of a laser vibrometer
(Polytech). The excitation signal from the amplifier and from the vibrometer are fed to a
digital scope (Yokogawa DL708E). The piezoceramics are bonded manually to the beam
with the help of cyanacrylat adhesive (HBM Z70 rapid adhesive). The thickness of the
bonding layer is smaller than 0�05mm. At the clamped end, the beam is welded to a base
which is fixed by screws at a foundation.

Figure 3 shows the measured response obtained by exciting the system with constant
frequency f ¼ 15�58Hz at different voltages. This first natural frequency is found at low
voltages, where the behavior of the piezo–beam system is approximately linear.
Subsequently, the applied voltage is increased at constant excitation frequency. This
curve is used for the determination of the four non-linear parameters d

ð1Þ
31 ; d

ð2Þ
31 ; E

ð1Þ
c and

E
ð2Þ
c by equation (31) via an optimization algorithm implemented in Matlab. The identified

‘‘non-linear’’ parameters are given in Table 2.
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Table 2

E
ð1Þ
c (N/m2) E

ð2Þ
c (N/m2) d

ð1Þ
31 (m/V) d

ð2Þ
31 (m/V)

�3�328
 10�12 �1�400
 1018 �36�9746 �0�03596
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The damping coefficients a; b (equation (28)) are determined by the same procedure as
used previously

a ¼ 0�15=s; b ¼ 3�165
 10�6 s;

which are very close to ‘‘structural’’ damping as described in reference [13].
The closed line in Figure 3 represents the theoretical result obtained by the model

described above, which is in good agreement with the measured data. The resonance
amplitude at the second resonance frequency was also calculated using the parameters
given in Table 2 in order to validate these results. For comparison, the maximum response
amplitude was measured at second resonance frequency with different excitation voltages.
Figure 4 shows measured and calculated results for this case, which clearly exhibit the
softening character due to the non-linearities.

In order to lift the restriction imposed by using one shape function only, the amplitude
was also calculated in several cases by numerical integration with up to four shape
functions considering full non-linear coupling corresponding to equation (25). These
results showed an excellent agreement with the result obtained with just one shape
function resembling the eigenfunction close to the excitation frequency.

The results differ from those obtained by using the shape functions of the beam without

piezoceramics [6, 11], where an increase in the number of shape functions used leads to a
better approximation. The ‘‘reward’’ for the effort of deriving the eigenfunctions of the
beam including the piezoceramics is therefore obvious!
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6. FINITE ELEMENT MODEL

The theoretical results were also verified by using a finite element model developed by
Parashar [14]. The derivation of the equations of motion follows the same steps up to
equation (19), where instead of using expansion (24), the finite element method is used for
discretization by simple one-dimensional beam elements. Figure 5 shows a comparison of
results, corresponding to those of Figure 3, using three elements for the part with
piezoceramics and 10 elements for the remaining part. The results of both theoretical
methods show good agreement.



PIEZO–BEAM SYSTEMS 871
7. INFLUENCE OF ASYMMETRIES

Experiments of forced vibrations of free piezoceramics often show asymmetric behavior
[6], e.g., peaks at even superharmonics in FFT-spectra. Due to the symmetric structure of
the system under consideration (one piezoceramic bonded at each side of the beam
respectively), the influence of the asymmetry of the piezoceramics vanish, as described
above. This results in the fact that even superharmonics of the excitation frequency are not
expected in light of equation (26). Consequently, this set-up seems to be ill-suited for the
determination of the ‘‘asymmetric’’ parameters d

ð1Þ
31 ; E

ð1Þ
c ; although they influence the cubic

non-linearities of equation (26).
Nevertheless, even superharmonics are observed in the described experiments of the

piezo–beam system. The authors attribute this effect to imperfections of the bonding and
of the piezoceramics. Experiments with piezoceramics which were intentionally relatively
shifted in the axial direction of the beam exhibited much higher peaks at even
superharmonics in FFT-spectra! These results may be attributed to electrostrictive
behavior, which is a well-known feature of piezoceramics. Electrostriction was not
considered in the enthalpy density (8).

However, the observed non-linear behavior at resonance is clearly a result of cubic-like
non-linearities as quadratic-like non-linearities have a minor influence.

8. CONCLUSIONS AND OUTLOOK

Typical non-linear effects were observed in experiments carried out with piezo–beam
systems subjected to weak electric fields. In order to model the system appropriately, a
non-linear ansatz was used for Young’s modulus Ec and the piezoelectric factor d31: The
equations of motion for the system under consideration were derived by the Ritz method
using Hamilton’s principle. The non-linear parameters were determined and the results
were validated through comparison with experiments.

The described effects may have significant influence on quantitative results and should
not be neglected when such structures are excited close to resonance frequencies!
Compared with references [6,11], the procedure could be improved by using improved
shape functions leading to a significantly faster convergence of the results. The appearance
of even superharmonics could be explained. One part of the authors’ ongoing work is to
decide whether such effects occur also with other types of piezoceramics and not only at
the d31-effect but also at the d33-effect, for example. For this purpose, experiments with
piezoceramics PIC181 manufactured by PI-Ceramic are being performed. In these
experiments, slender (pure) piezoceramics with 20mm length and a variety of cross-
sections are excited to longitudinal vibrations. Figure 6 shows the result of an excitation
with alternate voltage and an amplitude of 30V. It clearly exhibits a non-linearity of the
Duffing-type including a significant jump phenomenon!

It should be pointed out, that the described effect is, in fact, a non-linearity at weak
electric fields. The maximum applied electric field amplitude in the experiments was
Emax ¼ 5
 10�5 kV/m. For the well-known butterfly hysteresis, 2 kV/m are typical
amplitudes! The same is correct for the strains. In reference [15], a butterfly hysteresis
curve can be found for the material PIC 151, which were used in the experiments.

It can be shown that using the non-linear modelling presented in this paper, non-linear
effects at piezo–beam systems subjected to weak electric field could be modelled in a
qualitative correct manner. For a more exact quantitative determination of the non-linear
parameters, further investigations will be necessary. In future work, experimental data will
be more deeply explored and electrostriction will be included in the model.
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